Trobeu la matriu \(\boldsymbol{X}\) que satisfà l'equació matricial quan \(a=3\).
Quan \(a=3\) la matriu \(\boldsymbol{A}\) i el seu determinant són
\(\boldsymbol{A}=\left(\begin{array}{rrr} 1&-1&1 \\ 3&-3&2 \\ -1&0&1 \end{array}\right)\)
\(\left| \boldsymbol{A} \right| = 2 \cdot 3-7 = -1\),
Calculem primer la matriu inversa
\(
\displaystyle
\begin{align}
\boldsymbol{A}^{-1}
&=\frac{1}{\left|\boldsymbol{A}\right|}\cdot\left(\boldsymbol{A}^*\right)^{\mathsf{T}} \\[6pt]
&=\frac{1}{-1}\cdot\left(\begin{array}{rrr} -3&-5&-3 \\ 1&2&1 \\ 1&1&0 \end{array}\right)^{\mathsf{T}} \\[6pt]
&=-1\cdot\left(\begin{array}{rrr} -3&1&1 \\ -5&2&1 \\ -3&1&0 \end{array}\right) \\[6pt]
&=\left(\begin{array}{rrr} 3&-1&-1 \\ 5&-2&-1 \\ 3&-1&0 \end{array}\right)
\end{align}
\)
I ara calculem \(\boldsymbol{X}\)
\(
\displaystyle
\begin{align}
\boldsymbol{X}
&=\boldsymbol{B}\cdot\boldsymbol{A}^{-1} \\[6pt]
&=\left(\begin{array}{rrr} -3&-2&-4 \\ 5&-2&5 \end{array}\right)\cdot\left(\begin{array}{rrr} 3&-1&-1 \\ 5&-2&-1 \\ 3&-1&0 \end{array}\right) \\[6pt]
&=\left(\begin{array}{rrr} -31&11&5 \\ 20&-6&-3 \end{array}\right)
\end{align}
\)