Calculeu \( A^2 \) i \( A^3 \).
\( A^2 = \left( \begin{array}{ccc} \frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\ \frac{ \sqrt{3}}{2} & \frac{-1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)
·\left( \begin{array}{ccc} \frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\ \frac{ \sqrt{3}}{2} & \frac{-1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)
= \left( \begin{array}{ccc} \frac{-1}{2} & \frac{ \sqrt{3}}{2} & 0 \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)\)
\( A^3 = A^2·A =
\left( \begin{array}{ccc} \frac{-1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)
·\left( \begin{array}{ccc} \frac{-1}{2} & \frac{-\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} & 0 \\ 0 & 0 & 1 \end{array} \right)
= \left( \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right)\)