Calcula els següents límits, indicant que passa quan \(x\rightarrow +\infty\), \(x\rightarrow -\infty\) i \(x\rightarrow \infty\):
a) \(\displaystyle\lim_{x\rightarrow \infty} x^4 \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} x^4 = +\infty\) |
\(\displaystyle\lim_{x\rightarrow -\infty} x^4 = +\infty\) |
\(\displaystyle\lim_{x\rightarrow \infty} x^4 = +\infty\) |
b) \(\displaystyle\lim_{x\rightarrow \infty} x^5 \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} x^5 = +\infty\) |
\(\displaystyle\lim_{x\rightarrow -\infty} x^5 = -\infty\) |
\(\displaystyle\lim_{x\rightarrow \infty} x^5 = \infty\) |
c) \(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^3} \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} \frac{1}{x^3} = 0\) |
\(\displaystyle\lim_{x\rightarrow -\infty} \frac{1}{x^3} = 0\) |
\(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^3} = 0\) |
d) \(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^6} \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} \frac{1}{x^6} = 0\) |
\(\displaystyle\lim_{x\rightarrow -\infty} \frac{1}{x^6} = 0\) |
\(\displaystyle\lim_{x\rightarrow \infty} \frac{1}{x^6} = 0\) |
e) \(\displaystyle\lim_{x\rightarrow \infty} \sqrt[5]{x} \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} \sqrt[5]{x} = +\infty\) |
\(\displaystyle\lim_{x\rightarrow -\infty} \sqrt[5]{x} = -\infty\) |
\(\displaystyle\lim_{x\rightarrow \infty} \sqrt[5]{x} = \infty\) |
f) \(\displaystyle\lim_{x\rightarrow \infty} \sqrt[4]{x} \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} \sqrt[4]{x} = +\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow -\infty} \sqrt[4]{x} \) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} \sqrt[4]{x} \) |
Calcula els següents límits, indicant que passa quan \(x\rightarrow +\infty\), \(x\rightarrow -\infty\) i \(x\rightarrow \infty\):
a) \(\displaystyle\lim_{x\rightarrow \infty} 3^x \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} 3^x = +\infty\) |
\(\displaystyle\lim_{x\rightarrow -\infty} 3^x = 0\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} 3^x\) |
b) \(\displaystyle\lim_{x\rightarrow \infty} -3^x \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} -3^x = -\infty\) |
\(\displaystyle\lim_{x\rightarrow -\infty} -3^x = 0\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} -3^x\) |
c) \(\displaystyle\lim_{x\rightarrow \infty} \text{0,5}^x \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} \text{0,5}^x = 0\) |
\(\displaystyle\lim_{x\rightarrow -\infty} \text{0,5}^x = +\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} \text{0,5}^x \) |
d) \(\displaystyle\lim_{x\rightarrow \infty} -\text{0,5}^x \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} -\text{0,5}^x = 0\) |
\(\displaystyle\lim_{x\rightarrow -\infty} -\text{0,5}^x = -\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} -\text{0,5}^x \) |
e) \(\displaystyle\lim_{x\rightarrow \infty} 5^{-x} \) |
Solució: |
\(\displaystyle\lim_{x\rightarrow +\infty} 5^{-x} = 0\) |
\(\displaystyle\lim_{x\rightarrow -\infty} 5^{-x} = +\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty} 5^{-x}\) |
a) \(\displaystyle\lim_{x\rightarrow 0}\left(\log{x}\right)\) |
Solució: |
\(\displaystyle\nexists\lim_{x\rightarrow 0^-}\left(\log{x}\right)\) |
\(\displaystyle\lim_{x\rightarrow 0^+}\left(\log{x}\right)= -\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow 0}\left(\log{x}\right)\) |
b) \(\displaystyle\lim_{x\rightarrow 1}\left(\log{x}\right)\) |
Solució: |
|
|
\(\displaystyle\lim_{x\rightarrow 1}\left(\log{x}\right)=0\) |
c) \(\displaystyle\lim_{x\rightarrow \infty}\left(\log{x}\right)\) |
Solució: |
\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log{x}\right)\) |
\(\displaystyle\lim_{x\rightarrow +\infty}\left(\log{x}\right)=+\infty\) |
\(\displaystyle\nexists\lim_{x\rightarrow \infty}\left(\log{x}\right)\) |
d) \(\displaystyle\lim_{x\rightarrow 0}\left(\log_\text{0,1}{x}\right)\) |
Solució: |
\(\displaystyle\nexists\lim_{x\rightarrow 0^-}\left(\log_\text{0,1}{x}\right)\)
\(\displaystyle\lim_{x\rightarrow 0^+}\left(\log_\text{0,1}{x}\right)=+\infty\)
\(\displaystyle\nexists\lim_{x\rightarrow 0}\left(\log_\text{0,1}{x}\right)\) |
| |
e) \(\displaystyle\lim_{x\rightarrow \infty}\left(\log_\text{0,1}{x}\right)\) |
Solució: |
\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log_\text{0,1}{x}\right)\)
\(\displaystyle\lim_{x\rightarrow +\infty}\left(\log_\text{0,1}{x}\right)=-\infty\)
\(\displaystyle\nexists\lim_{x\rightarrow \infty}\left(\log_\text{0,1}{x}\right)\) |
| |
a) \(\displaystyle\lim_{x\rightarrow -\infty}\left( 3x^4-2x^5 \right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow -\infty}\left( 3x^4-2x^5 \right) =
\lim_{x\rightarrow -\infty}\left( -2x^5 \right) = +\infty
\) |
b) \(\displaystyle\lim_{x\rightarrow\pm\infty}\left(2x^2-3\sqrt{x^5}\right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow \pm\infty}\left( 2x^2-3\sqrt{x^5} \right) =
\lim_{x\rightarrow \pm\infty}\left( 2x^2-3x^\frac{5}{2} \right) =
\lim_{x\rightarrow \pm\infty}\left( -3x^\frac{5}{2} \right) = \mp\infty
\) |
c) \(\displaystyle\lim_{x\rightarrow +\infty}\left(3^x-x^4\right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow +\infty}\left(3^x-x^4\right) =
\lim_{x\rightarrow +\infty} {3^x} = +\infty
\) |
d) \(\displaystyle\lim_{x\rightarrow -\infty}\left(3^x-x^4\right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow -\infty}\left(3^x-x^4\right) =
\lim_{x\rightarrow -\infty} {-x^4} = -\infty
\) |
e) \(\displaystyle\lim_{x\rightarrow +\infty}\left(x-\log_2{x}\right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow +\infty}\left(x-\log_2{x}\right) =
\lim_{x\rightarrow +\infty} {x} = +\infty
\) |
f) \(\displaystyle\lim_{x\rightarrow -\infty}\left(\log{x}-\log_2{x}\right)\) |
Solució: |
\(\displaystyle\nexists\lim_{x\rightarrow -\infty}\left(\log{x}-\log_2{x}\right)
\) |
g) \(\displaystyle\lim_{x\rightarrow +\infty}\left(4x^3-5^x+\log_5{x}\right)\) |
Solució: |
\(\displaystyle
\lim_{x\rightarrow +\infty}\left(4x^3-5^x+\log_5{x}\right) =
\lim_{x\rightarrow +\infty}\left(-5^x\right) = -\infty
\) |
a) \(\displaystyle\lim_{x\rightarrow \infty}\frac{2x^2+3x^3}{4x^3-5x}\) |
Solució: |
\(\displaystyle \lim_{x\rightarrow \pm\infty}\frac{2x^2+3x^3}{4x^3-5x} = \frac{3}{4}\)
|
b) \(\displaystyle\lim_{x\rightarrow \infty}\frac{4x^4-5x^2}{-2x^3+x^2-6x}\) |
Solució: |
\(\displaystyle \lim_{x\rightarrow \pm\infty}\frac{4x^4-5x^2}{-2x^3+x^2-6x} = \mp\infty \)
|
c) \(\displaystyle\lim_{x\rightarrow \infty}\frac{-5x^3+3x^2}{-4x^4+6x^2-1}\) |
Solució: |
\(\displaystyle \lim_{x\rightarrow \infty}\frac{-5x^3+3x^2}{-4x^4+6x^2-1} = 0 \)
|
d) \(\displaystyle\lim_{x\rightarrow +\infty}\frac{x^3+e^x}{x^4+\log_2{x}}\) |
Solució: |
\(
\displaystyle
\lim_{x\rightarrow +\infty}\frac{x^3+e^x}{x^4+\log_2{x}} =
\lim_{x\rightarrow +\infty}\frac{e^x}{x^4} =
+\infty
\)
|
e) \(\displaystyle\lim_{x\rightarrow -\infty}\frac{x^3+e^x}{x^4+\log_2{x}}\) |
Solució: |
\(
\displaystyle
\nexists\lim_{x\rightarrow -\infty}{\log_2{x}} \Rightarrow
\nexists\lim_{x\rightarrow -\infty}\frac{x^3+e^x}{x^4+\log_2{x}}
\)
|
f) \(\displaystyle\lim_{x\rightarrow +\infty}\frac{3^x-e^x}{2^x-e^x}\) |
Solució: |
\(
\displaystyle
\lim_{x\rightarrow +\infty}{\frac{3^x-e^x}{2^x-e^x}} =
\lim_{x\rightarrow +\infty}{\frac{3^x}{-e^x}} =
-\infty
\)
|